Processing math: 9%

Thông tin

Tác giả Victor Belpaire,Maxime Parmentier
Hạn chót Không có hạn chót
Giới hạn nộp bài Không có giới hạn
Các tag chuyên mục Limites, Niveau: moyen

Tags

Đăng nhập

Limites - 11

Voici le graphe de la fonction f. Déterminer si les limites suivantes existent. Si oui, donner les valeurs de celles-ci.

246−2−4−6123−1−2

Câu hỏi 1:

Calculer

lim

Si la limite n'existe pas, entrer \emptyset.

$\frac{\square}{\square}$$\sqrt{\square}$$\sqrt[3]{\square}$3$\sqrt[\square]{\square}$$\int_{\square}^{\square}$$\square^2$2$\square_2$2$\left(\square\right)$()
$\times$×$\div$÷$\pm$±$\pi$π$\infty$$\varnothing$$\ne$$\ge$$\le$$>$>$<$<$\cup$$\cap$
$\angle$$\parallel$$\perp$$\triangle$$\parallelogram$
Câu hỏi 2:

Calculer

\begin{equation*} \lim_{x\to-3} f(x) \end{equation*}

Si la limite n'existe pas, entrer \emptyset.

$\frac{\square}{\square}$$\sqrt{\square}$$\sqrt[3]{\square}$3$\sqrt[\square]{\square}$$\int_{\square}^{\square}$$\square^2$2$\square_2$2$\left(\square\right)$()
$\times$×$\div$÷$\pm$±$\pi$π$\infty$$\varnothing$$\ne$$\ge$$\le$$>$>$<$<$\cup$$\cap$
$\angle$$\parallel$$\perp$$\triangle$$\parallelogram$
Câu hỏi 3:

Calculer

\begin{equation*} \lim_{x\to0} f(x) \end{equation*}

Si la limite n'existe pas, entrer \emptyset.

$\frac{\square}{\square}$$\sqrt{\square}$$\sqrt[3]{\square}$3$\sqrt[\square]{\square}$$\int_{\square}^{\square}$$\square^2$2$\square_2$2$\left(\square\right)$()
$\times$×$\div$÷$\pm$±$\pi$π$\infty$$\varnothing$$\ne$$\ge$$\le$$>$>$<$<$\cup$$\cap$
$\angle$$\parallel$$\perp$$\triangle$$\parallelogram$
Câu hỏi 4:

Calculer

\begin{equation*} \lim_{x\to2} f(x) \end{equation*}

Si la limite n'existe pas, entrer \emptyset.

$\frac{\square}{\square}$$\sqrt{\square}$$\sqrt[3]{\square}$3$\sqrt[\square]{\square}$$\int_{\square}^{\square}$$\square^2$2$\square_2$2$\left(\square\right)$()
$\times$×$\div$÷$\pm$±$\pi$π$\infty$$\varnothing$$\ne$$\ge$$\le$$>$>$<$<$\cup$$\cap$
$\angle$$\parallel$$\perp$$\triangle$$\parallelogram$
Câu hỏi 5:

Calculer

\begin{equation*} \lim_{x\to4} f(x) \end{equation*}

Si la limite n'existe pas, entrer \emptyset.

$\frac{\square}{\square}$$\sqrt{\square}$$\sqrt[3]{\square}$3$\sqrt[\square]{\square}$$\int_{\square}^{\square}$$\square^2$2$\square_2$2$\left(\square\right)$()
$\times$×$\div$÷$\pm$±$\pi$π$\infty$$\varnothing$$\ne$$\ge$$\le$$>$>$<$<$\cup$$\cap$
$\angle$$\parallel$$\perp$$\triangle$$\parallelogram$